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ABSTRACT 

We in t roduce  a measure  of complexi ty  for affine a lgebras  and  the i r  f ini tely 

generated modules, in terms of the degrees of the polynomials used in 
their description. We then study how various cohomological operations and 
numerical invariants are uniformly bounded with respect to these complex- 
ities. We apply this to give first order characterisations of certain algebraic- 
geometric properties. This enables us to apply the Lefschetz Principle to 
transfer properties between various characteristics. As an application, we 
obtain the following version of the Zariski-Lipman Conjecture in positive 
characteristic: let R be the local ring of a point P on a hypersurface over an 
algebraically closed field K such that the module of K-invariant derivations 
on R is free, then P is a non-singular point, provided the characteristic is 
larger than some bound only depending on the degree of the hypersurface. 

1. I n t r o d u c t i o n  

1.1. TRANSFER PRINCIPLES. Often a remarkable  d icho tomy in a lgebraic-  

geomet r ic  resul ts  be tween zero and  posi t ive  charac te r i s t ic  can be  observed in 

b o t h  the i r  s t a t emen t s  and  thei r  proofs.  Thus  it appea r s  t ha t  p rob lems  involving 

s ingular i t ies  are  ha rde r  to prove in posi t ive  charac te r i s t ic  t h a n  in zero charac te r -  

ist ic (e.g., reso lu t ion  of s ingular i t ies) ,  or are even false in posi t ive  charac te r i s t i c  

( Z a r i s k i - L i p m a n  Conjecture ,  see below). In  contras t ,  homological  quest ions  t end  

to  be  easier  to prove in posi t ive  charac te r i s t ic  in view of the  presence of the  

F roben ius  morph i sm;  here the  Bass Conjec ture  (see below) is a good  example .  

However,  in some cases the  val id i ty  of a resul t  in one case of the  charac te r i s t i c  can 

be  inferred f rom its va l id i ty  in the  o ther  case. The  most  naive way to do this  is by 

reduct ion:  for a s imple  example  take  the  Diophan t ine  equa t ion  X 2 + y 2  _ 3Z2; 

i t  has  no solut ions  in posi t ive  integers for it  has no solut ions  modu lo  3. A much 

more  soph i s t i ca t ed  t ransfer  pr incip le  is the  Lefschetz Pr inc ip le  as fo rmula ted  by  
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Weil. Unfortunately, the latter principle is metamathematical in nature.* We 

propose to use in this paper a first order version of this principle, which we will 

continue to call the Lefschetz Principle, for sake of simplicity. Most succinctly 

stated, it is the following isomorphism of fields 

(1) c = ~ I I  
u 

where pplg is the algebraic closure of the p-element field Fp (p prime) and 5/is a 

non-principal ultrafilter on the set of primes. 

Before explaining the bearing of this isomorphism, let us first indicate some 

of the results in this paper obtained through an application of the Lefschetz 

Principle. In Section 5 we will show that the validity of both the Bass Conjecture 

and the New Intersection Theorem for affine local rings over an algebraically 

closed field of characteristic zero can be derived from its validity in case the 

characteristic is positive. In the original proofs, a similar transfer is shown, albeit 

by ad hoc means. However, we do reach some new conclusions in Section 6, where 

we show some low degree version of the Zariski-Lipman Conjecture in positive 

characteristic. More precisely, we show that if the local ring R of a point x on 

a scheme X of finite type over an algebraically closed field K of characteristic p 

admits a free module of K-derivations DerK(R), then X is normal at the point 

x, provided the polynomials defining X and the prime ideal of x have small 

degree with respect to the characteristic p. Moreover, if X is a hypersurface, 

then under the same assumptions, x is a non-singular point on X. Note that 

both results are false without any restriction on the degree. We derive these 

results using the Lefschetz Principle in conjunction with known cases ([Lip] and 

[SS]) of the Zariski-Lipman Conjecture in characteristic zero. One could also 

prove, using the Lefschetz Principle in the same way, a low degree version of 

Embedded Resolution of Singularities, as already observed by Eklof in [Ek 2]. 

However, it is important to note that, whereas the latter property can also be 

derived from a direct investigation of the proof in characteristic zero (for instance, 

using Bierstone and Milman's explicit proof IBM]), this is no longer true for the 

former properties. Indeed, the proofs to both the New Intersection Theorem 

and the Bass Conjecture use an application of the Frobenius functor and whence 

are not available in characteristic zero and something like Hochster's Finiteness 

Theorem (see [Ho D or our method is needed. Likewise, the aforesaid results [Lip] 

* Perhaps the best attempts to formulate this principle in a formal, model-theoretic 
language are [Ek] and [BE]; for a more general version than (1) below, see [F J, 
Theorem 8.3]. 
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and [SS] on the Zariski-Lipman Conjecture, use both analytic methods in their 

proof and whence cannot be transferred to positive characteristic. Therefore, to 

my knowledge, our (indirect) proof is the only one available at present. 

In the rest of this introduction, we will sketch the technique behind this transfer 

principle. A de f inab le  set U of K ~, for some n = 0, 1 , . . . ,  is an element of the 

smallest Boolean algebra 7)(K) closed under the following two rules: 

(D1) any constructible set V C K m lies in 7)(K); 

(D2) if U C K n+l lies in :D(K) and ~: K n+l -+ K n is the projection on the first 

n coordinates, then also u(U) lies i n / ) ( K ) .  

Recall that  a c o n s t r u c t i b l e  set is a finite union of locally closed sets F \ Z, 

with F and Z zero sets of finitely many polynomials over K. Let R be a subring 

of K. If we allow in (D1) only constructible sets in which all equations have 

coefficients from R, then we obtain the subclass :DR(K ) of R-def inab le  subsets. 

In particular I ) K ( K )  = I ) (K) .  If R is the prime subfield of K,  then we write 

:D~(K) for DR(K) and call its elements 0-def inable  (read zero-definable). It 

follows from Chevalley's theorem (or from algebraic quantifier elimination) that  

7)(K) with K algebraically closed coincides with the collection of all constructible 

sets of K.  

A first  o r d e r  f o r m u l a  (or, simply fo rmula)  is a functorial way of assigning 

to an algebraically closed field K a 0-definable subset of K.  More precisely, a 

formula in the free variables x = ( x t , . . . ,  Xn) is an expression 

= (3y0)(VYl)...  (3y~_l)(Vy~) V A pi j ( x , y )  = 0 A qij(x,y) r 0 
i~rn j ~ n  

with pij and qij polynomials over Z and yj (possibly empty) tuples of variables. 

Such a formula ~ defines for an arbitrary field K a 0-definable subset I~lK as 

follows. An n-tuple x E K ~ belongs to I~IK, if and only if, there exists a tuple 

Yo over K,  such that  for all tuples Yl over K,  . . .  , such that  there exists a tuple 

Ys-1 over K,  such that for all tuples ys over K,  we have for some i < m and 

all j < n that  pij(x, y0 , . . .  ,y~) = 0 and qij(x, Yo,.. .  ,Y~) r 0. The reader easily 

checks that I~IK belongs to :D0(K ). Note that  it is not true in general that  if 

K C L is an extension of fields then I~lK maps into I(fllL under the inclusion 

K n C L '~. However, if K and L are algebraically closed, then this is true, again 

by quantifier elimination. In other words, a formula ~ can be viewed as a functor 

from the full subcategory of algebraically closed fields to the category of sets. 

We will sometimes make use of the following version of the Compactness 

Theorem for first order logic. 
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1.2. FIRST ORDER COMPACTNESS: Let ~ be a sequence of first order formulae 

in n free variables. I f  for every field K,  we have that 

I 'olK = U Iw, 
i >1  

(as subsets of Kn) ,  then there b some io, such that, for each field K ,  we have 

that 
io 

I olK = U I  IK- 
i----1 

We say that a formula ~ in the free variables (X l , . . . , x n )  is t r u e  in K,  if 

] ~ [ g  = Kn (i.e., every n-tuple over K satisfies the formula ~). The Lefschetz 

Principle (1) is now equivalent with the following. 

1.3. LEFSCHETZ PRINCIPLE: Let ~ be a formula. Then ~ is true in C, i f  

and only if, it is true in infinitely many pplg. Moreover, in this case, there is an 

N = N(~)  E N, such that ~ holds in any algebraically dosed field of characteristic 

bigger than N or equal to zero.* 

Note that  not any functor which assigns a 0-definable subset to an algebraically 

closed field has this property; the notion of a formula is not a moot one. 

1.4. DEFINABILITY. With this setup, let us now look at an example in which 

we want to apply this principle. Let K be an algebraically closed field. With 

an af l ine local  r ing  over K,  we mean a local ring (R, m) which is essentially 

of finite type over K,  i.e., a localisation of a finitely generated K-algebra. The 

(affine version of the) Bass conjecture for K states that  any affine local ring 

over K admitting a finitely generated module of finite injective dimension must 

be Cohen-Macaulay (the converse is also true). As such, this does not appear 

to be a statement which can be translated into a first order formula. For one 

thing, we quantify over all affine local rings of K.  Moreover, it is not clear 

how to encode in a first order way properties as finite injective dimension and 

Cohen- Macaulayness. 

To bypass the first problem we will only make statements about certain sub- 

classes AffLOcd(K ) of affine local rings over K (for d -- 0, 1 , . . .  ). We want 

of course that  the union of all the AffLOcd(K ) gives the class of all (isomor- 

phism classes of) affine local rings AffLoc(K) over K and also that each class 

AffLOcd(K ) can be identified with a 0-definable subset Ld, g of K, in some affine 

* If one wishes, the dichotomy mentioned above becomes in the first order case a 
dichotomy between all and almost all characteristics. 
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space K g(d) where N(d) depends on d. For convenience's sake, we will also re- 

quire that  AffLOcd(K ) C AffLOCd+l(K) and the corresponding O-definable sub- 

sets also satisfy Ld,K C Ld+l,g. Here we fix an embedding of K n in K n+m via 

( x l , . . . ,  x,~) ~ ( x l , . . . ,  x,~, 0 , . . . ,  0) and assume that always N(d) <_ N ( d + l )  (by 

adding zeros if necessary). However, since we want to use the Lefschetz Principle, 

we should make the construction functorial in K. In other words, for each d, we 

want to construct a formula AffLocd (in the free variables ( x l , . . . ,  XN(d))), such 

that IAffLOCdlg ---- Ld,g. Concretely, let AffLOcd(K) be the class of all affine 

local rings of the form 

(2) R = \  j(gl . . . . .  

where ( g l , . . . ,  gt) is a prime ideal, n, s, t < d and each fi, gj has degree at most 

d. Adding zeros if necessary, we even may take n = s = t = d. If the above 

bounds hold for R, then we say that its c o m p l e x i t y  is at most d. Each affine 

local ring R as in (2) of complexity at most d is now encoded by giving the tuple 

a of all coefficients of the fi and the gj, listed in a fixed order. We'll write this 

as R -- T~(a). Note that  each polynomial f over K in the variables (X1,.. . ,  Xd) 
of degree at most d is of the form 

f =  ~-'~ avX ~" 
Ivl<_d 

where av E K and v = ( v l , . . . ,  Vd) is a tuple of indices with I~1 = vl + ' "  +Vd < d. 

Hence the the polynomial f is determined by the tuple (av). In other words, 

when R = 7~(&), then a consists of 2d such tuples (determining the f~ and the 

gj), subject to the condition that the last d tuples determine polynomials which 

generate a prime ideal. We will show in (2.3) below that  there exists a formula 

AffLOCd which precisely expresses this fact. Summarizing, we found, for each d, a 

formula Af:fLOCd, such that  there is a surjective map a ~-~ ~(a)  from IAffLoCdlg 

onto AffLOCd(K). In fact, if we view AffLo% as a functor from the category of 

fields to the category of sets, sending a field K to the collection of affine local K- 

algebras AffLocd(K ) of complexity at most d, and, if we view AffLocd as a functor 

as well as explained above, then we have a surjective natural transformation 

(3) AffLocd -+ AffLoc d. 

Here we call a natural transformation ~?: F ~ G of functors su r j ec t ive ,  if for 

each object M, we have that  ~(M):  F(M) --+ G(M) is surjective. 
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Remark: A surjective natural transformation is in general the best one can hope 

for. The reason for this is that as of now, I do not know whether one can express 

by a first order formula in the codes a and b that 7~(a) --- T~(b). In general, the 

isomorphism problem is a subtle matter  and we intend to return to this question 

in a future paper. Let us just indicate the main problem. Fix some bound d 

and let a, b be codes for two affine local K-algebras R = T~(a) and S = 7~(b) of 

complexity at most d. For each e, one can write down a formula Isoe expressing 

that R and S are isomorphic via an isomorphism r so that both r and its 

inverse r  are defined by polynomials of degree at most e (i.e., r and r  have 

c o m p l e x i t y  at most e, in the terminology of (2.5) below). However, if R ~- S, 

both of complexity at most d, then there is no a priori bound on the least e for 

which such an isomorphism of complexity at most e exists. In other words, a and 

b define isomorphic affine local rings, if and only if, (a, b) belongs to 

[.J II- oeDK �9 
e 

However, the latter is not in general a definable set (the collection of definable 

sets is not closed under countable unions, only under finite unions). It would 

be, though, if we could find an a priori bound on e in terms of d. However, 

the present techniques are insufficient to obtain such bound, as we have to find 

solutions to a quadratic system of equations. Theorem (2.2) below only allows 

one to deduce bounds in case the system of equations is linear. What  is needed 

is therefore a non-linear version of (2.2). As such, this is impossible, but using 

a more local notion of complexity, e ta le  comp lex i t y ,  we will show in a future 

paper how to find bounds to non-linear systems of equations. 

If one were to find a first order formula expressing that ~ (a )  TM T~(b), then by a 

technique called Elimination of Imaginaries, one could replace in (3) the formula 

A:f:fLOCd SO that  the resulting natural transformation is bijective. However, for 

our present purposes, such a refinement will not be necessary. 

We will write code(R) for the collection of all tuples a belonging to IAf:fLOCdlg 

for which T~(a) ~ R. We call such a tuple a c code(R) simply a c o d e  for R and 

it will not matter  which code we pick. The reader should keep in mind that in 

general code(R) is not a definable set. 

Next we want to encode finitely generated modules. Fix some affine local 

K-algebra R. Note that every element of R is of the form f / g ,  with f and g 

polynomials over K.  Any finitely generated R-module M admits a representation 

(4) RS ff-~R t ~ M ~ 0 
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with F an s • t-matrix with entries in R. We will say that M has co m p lex i t y *  

at most d, if we can find a representation (4) with s, t < d and each entry of 

F is a quotient of two polynomials of degree at most d. Let m be the tuple of 

coefficients of all polynomials involved in describing F. We will indicate this by 

writing M = Ad(m) and we let code(M) be the collection of all m for which 

A4 (m) ~- M. The reason that we can not apply Elimination of Imaginaries here 

either is because again, we do not know how to express by aid of a formula that  

two tuples m and n yield isomorphic modules f14 (m) ~ f14 ( , ) .  

Again we should make this construction functorial in the base field K.  For this 

purpose, we should vary R as well. In other words, we should consider the functor 

Mod from the category of algebraically closed fields to sets, which assigns to some 

field K the set Mod(K) of all pairs (R, M) with R an affine local K-algebra and 

M a finitely generated R-module. We let Modd(K) be the collection of all pairs 

(R, M) with both R and M of complexity at most d. From the above discussion 

it then follows that  there exists for each d a formula Mod d and a surjective natural 

transformation 

~/: Modd --+ Mod d. 

We will let code(R, M) be the collection of all pairs (a, m) for which ~(a)  ~ R 

and M (m) ~ M. 

Returning to the example of the Bass Conjecture, we would like to find a 

formula cgd, such that for each algebraically closed field K and each tuple a 

in  IAffL0adlK, we have that  a belongs to ICMd[/~, if and only if, TO(a) is Cohen- 

Macaulay. Similarly, we want a formula F in In jd  , such that for each algebraically 

closed field K and each tuple (a,m) in IM0ddlK, we have that (a,m) belongs to 

IFinInjdlK , if and only if, the module M(m)  has finite injective dimension over 

TO(a). Assume the existence of such formulae and let BaSSd,e be the formula 

(5) FinInje(a, m) -+ CMd(a), 

for d ~ e (where in F in In je (a ,m) ,  we might have added some zeros to a to 

make it of the right length; such considerations on the length of a tuple will 

not be made explicit, as it will be clear from the context what the appropriate 

length should be). We can now express the validity of the Bass Conjecture over 

some algebraically closed field K by stating that all BaSSd,e are true. Putt ing 

(5) together with the Lefschetz Principle (1.3), we can conclude that  if the Bass 

* This notion of complexity should not be confused with a notion from commutative 
algebra used to measure the asymptotic behaviour of Betti numbers. 
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Conjecture is true over every (or over infinitely many) ~plg, then it is true for 

every algebraically closed field of characteristic zero. As a matter of fact, Peskine 

and Szpiro first proved the Conjecture in positive characteristic and then used an 

ad hoc technique to lift it to zero characteristic. The main purpose of this paper 

is to show how this and similar liftings can be made via first order definability. In 

doing so, we will provide a general framework in which many other problems can 

be formulated in a similar first order way and whence become available for an 

application of the Lefschetz Principle. The basic tool to obtain formulae such as 

CM d and F• d is first to give a cohomological characterisation of the properties 

they seek to encode. To finish we then will show how various bounds in coho- 

mology, depending merely on the complexity of the initial data, exist. That  such 

bounds are necessary, follows from the fact that a (first order) formula should 

only contain a finite number of variables, disjunctions and conjunctions. There- 

fore the apparent infinite numbers of variables or conjuncts/disjuncts required, 

can be reduced to finitely many. 

1.5. GEOMETRIC POINT OF VIEW. For the reader who does not feel too con- 

fident with model theoretic terminology, we propose the following alternative 

reading of this paper. Assume first of all that the field K is algebraically closed, 

so that  any definable set (in the sense of (1.1)) is constructible; this will be his 

sole concession for an easier reading of the paper. We will study various geomet- 

ric or algebraic objects M defined (now in the non-technical sense of the word) 

over K,  which are described by certain (tuples of) parameters a (called codes 

above). Let us make more explicit in which way this dependence on parameters 

is to be understood. Let /2 --+ Jl be a finitely generated Z-algebra morphism 

between Z-algebras of finite type. We think of Spec/2 as the parameter space for, 

typically, Z: will just be a polynomial ring over Z. Fix an algebraically closed 

field K.  Let L[ denote the collection of (isomorphism classes of) affine coordinate 

rings of closed fibres 7r -1 (u) of the map 

7r: Spec(A | K) -+ Spec(L | K) 

where u runs over all closed points of Spec(s | K). In other words, 11 is the 

collection of (isomorphism classes of) quotient rings (A | K) /m(A | K),  where 

ra runs over the maximal ideals of L | K. Such a collection of finitely generated 

K-algebras will be called a b o u n d e d  family.  Let A be a member of 11. We call 

a closed po in tu  E Spec(EQz K) for which A is isomorphic to the coordinate ring 

of zr-l(u), a p a r a m e t e r  (or, code) for A.* 

* To be entirely precise, one should call u a ~r-parameter for A. 
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It is almost immediate that there exists, for each bounded family H, a bound 

Da, such that  each K-algebra in 11 has complexity at most Da (see (2.1) for 

definitions). Conversely, the collection of all affine K-algebras of complexity at 

most d, is a bounded family. Namely, l e t / :  be the polynomial ring Z[~], where 

= (~,i), for i = 1 , . . . ,  N and u E N d with [u[ _ d, is a collection of variables. 

Let .4 be the ring 
Z[CX] 

( E ~ , ~ x ~ , . . . ,  E~  ~ ,Nx~)  

where X = ( X I , . . . , X d ) .  H e r e N - - ( 2 d ) ; s e e ( 2 . 1 ) f o r d e t a l l s .  As in (2 .3 )  

below, it follows from (2.2) that there exists a constructible set II in Spec s such 

that, for each algebraically closed field K,  the fibre 7r - l (u)  is irreducible, if and 

only if, u belongs to H • K C Spec(s | K). 

Similarly, with s and ,4 as before, let A4 be a finitely generated ,4-module, 

with representation 

-4 8 ~-L~ ,4t -~ M ~ o 

where G is an (s x t)-matrix over -4. Let A C tl and consider the collection of all 

modules (~4 | K)/m~(A4 | K),  where u runs over all possible parameters for 

A and Where m~ is the maximal ideal in s | K corresponding to the closed point 

u. Call this collection of A-modules again a b o u n d e d  family.  From the above 

exact sequence it follows that this family is obtained as all possible cokernels 

of specialisations of the matrix G to parameters for A. Or, alternatively, if 9 r 

is the coherent OSpec.4-sheaf corresponding to h4, then we are looking at the 

collection of all restrictions of 5 r • K to closed fibres r - l (u) ,  where u runs over 

all parameters of A. Hence in the terminology of (1.3), there is again a bound 

on the complexity of each member in the family. In a similar way as before, 

by choosing ~ to be a generic ,4-matrix, one shows that the collection of all 

A-modules of complexity at most d is a bounded family. 

By taking products 

7r x r  Spec,4 x Spec B --4 Spec s 

one could in the same way get a bounded family consisting of pairs, triples, etc., 

of K-algebras, modules, etc. In particular, using the constructible set II of above, 

one can construct a constructible set H ~ in Spec E, such that for each closed point 

u in HI Xz K,  the closed fibre 7r-l(u) has coordinate ring A and the closed fibre 

r  has coordinate ring A/p,  with p a prime ideal of A. Let R = Ap, then we 

call u a p a r a m e t e r  for R and the collection of all these affine local K-algebras 
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forms a b o u n d e d  family.  Once more does any bounded family of affine local 

K-algebras have bounded complexity and, conversely, the collection of all local 

affine K-algebras of complexity at most d forms a bounded family. We leave it 

up to the reader to perform a similar analysis for the other algebraic-geometric 

objects M (schemes, cycles, etc.) appearing in this paper and to give a precise 

meaning of the notion of a parameter for M. 

Now, let (M1 , . . . ,Ms )  be an s-tuple of algebraic-geometric objects and let 

Spec/:  be a parameter space for s-tuples of such objects. For an alternative 

recipe to read this paper, do the following. Whenever in the text we say that 

such-and-such property of the objects Mi can be expressed by a 

first order formula in their codes a~, 

replace this by 

there is a constructible set F C Spec s so that property such- 
and-such holds for the objects Mi, if and only if, there exists a 

parameter  for their tuple (M1, . . . ,  Ms) in F • z K. 

In other words, if the property is uniformly constructible in the parameter space. 

1.6 .  ACKNOWLEDGMENT. W e  want to express our thanks to Moshe Jarden for 

his many valuable suggestions and remarks; they surely improved the readability 

of the present paper. 

2. C o m p l e x i t y  a n d  b o u n d s  

2.1. Definition: In the previous section we introduced the notion of complexity 

without providing much details. In this and subsequent sections we will introduce 

more systematically various complexities and study their properties. We call a 

ring A afIine, if it is a finitely generated algebra over some field K.  In other 

words, A is of the form g [ x ] / ( f l , . . . ,  fs), with X = ( X l , . . . ,  X,~). We say that  

an ideal a = ( f l , . . - ,  fs) of K [ X 1 , . . . ,  Xn] has d e g r e e  t y p e  at most d, if n <_ d 

and a can be generated by polynomials fi of degree at most d. We will denote 

this by deg. type a <_ d. Note that there is no need to also bound the number s of 

generat~ ~ the ideal a = ( f l " ' " f s ) "  Indeed' recall that ( k + n - 1 )  

the number of monomials of degree k in n variables. Therefore, the number of 

monomials of degree at most d in n variables is given by 

(,) 
n - - 1  

k=O 
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Now, if deg. type a _< d, then we can write a = ( f l , . . . ,  fs) with all f~ E K[X] of 

degree at most d in X -- (X1 , . . . ,  Xn) with n _< d. Take some monomial ordering 

on the variables X = (X1 , . . . ,  Xn) and normalize each fi so that its leading term 

with respect to this ordering has coefficient one. If two of the fi have the same 

leading term, then subtracting one from the other gives a pair of generators with 

different leading terms. Therefore, we can arrange for all generators to have 

different leading term and hence the maximal number of generators needed to 

generate a is at most the number of monomials of degree at most d, that is to 

say, isatmost (2d),sincen<d. 

We say that an affine algebra A has c o m p l e x i t y  at most d, if A - K[X]/a 
with deg. type a < d. If a is an ideal of A, then we say that a has d e g r e e  t y p e  at 

most d and write deg. type a _< d if A has complexity at most d and there exists 

an ideal P2 in K[X] of degree at most d, such that a -- P2A. In fact, the degree 

function on K[X] induces a degree function on A by calling f E A of d e g r e e  

at most d if it admits some lifting F C K[X] of degree at most d. Therefore, 

we will often say that an ideal is generated by polynomials of degree at most 

d, even if the affine ring we work in is not a polynomial ring. In particular, if 

deg. type a < d, then A/a has complexity at most d. We call a ring R an at t ine 

local  ring, if it is the localisation of an affine ring A with respect to a prime 

ideal p. We say that its c o m p l e x i t y  is at most d, if deg. type p ~ d (note that  

by definition this includes that also A has complexity at most d). 

Caution: The notion of complexity depends on the field K over which we work. 

For instance, if K C L is a finite extension of fields of degree d, then L has 

complexity d over K (to wit, L = K[X]/(f) with f an irreducible polynomial 

of degree d), but has complexity 1 over itself (to wit, L = L[X]/(X)). This 

ambiguity is resolved over algebraically closed fields. Nonetheless, even if the base 

field is not algebraically closed, we will not make reference to it when discussing 

complexity; it should be clear from the context what is meant. 

SincethereisaboundN=(2dd) onthenumberofgeneratorsforanideala 

with deg. type a <_ d, we can describe it by giving a tuple a in the base field K of 

length N 2 listing all coefficients of a generating set for a. We will indicate this 

by writing Z(&) = a and we let code(a) be the collection of all tuples a for which 

a = Z(a). Similarly any affine ring A can be described by means of a tuple a over 

g (of length N 2) as A = g[z]/z(a). We will indicate this by writing A = A(&) 

and we let code(A) be the collection of all a for which A(a) - A. In the previous 

section we claimed that  a similar result holds for affine local rings, but for this we 



136 H. SCHOUTENS Isr. J. Math. 

need already some results on bounds in polynomial rings. The following Theorem 

is a compilation of several results obtained in [SvdD]. These bounds will serve 

as the cornerstone for our own results on bounds in cohomology. Some of these 

results were already known for a long time, but the authors introduced to the 

subject a novel technique: they obtained these bounds via some model theoretic 

non-standard arguments. In this paper  we will not need this technique, only the 

results obtained from it, and we refer the reader for further details to loc. cit. 

2�9 

with 

Y =  

most 

(i) 

THEOREM (van den Dries-Schmidt): For each d, there exists a bound D 

the following properties�9 Let K be a field�9 Let X = ( X I , . . .  ,Xd)  and 

(111,..., Yd) be variables. Let A be an affine K-algebra of complexity at 

d and let a be an ideal of A of degree type at most d. 

Let  t E N and let f i , f i j ,  for i = 1 , . . .  , t  and j = 1 , . . .  ,d, be polynomials 

over K in the variables X of degree at most el. Suppose the linear system 

of equations 

f l  : fllY1 -[-�9 �9 f ldrd 

f2 : f21Y1 -[- . . .  f2drd 

ft  = ftlYx + . . .  ftdYd 

(iii) 

has a solution for the Y-variables over K[X], then it has already a solution 

( q l , . . . ,  qd) with all qi E K[X] of degree at most D. Moreover, if  a11 the 

fi  = O, then any solution of this (homogeneous) system of equations is a 

linear combination with coefficients in K[X] of solutions of degree at most 

D. 

(ii) Let 

a = 91 N... Ng~ 

be a minimal primary decomposition of a. Then s <_ D and each gi has 

degree type at most D. The radical rad a of a and the radicals Pi of gi (so 

that  the Pi are the associated primes of a) all have degree type at most D. 

Moreover, p~ is contained in gi and, similarly, (rad a) D lies in a. 

I f  for each f ,  g C A of degree at most D, we have that f g  C a implies that 

f or g belongs to a, then a is a prime ideal�9 

I f  A is moreover a domain and any monic equation 

TS + f s -1Ts-1  + " "  + fo = 0 
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with s <_ D and fi E A of degree at most D, has no solutions in the fraction 

field of A which are not already in A, then A is normal. 

2.3. Remark: Before we derive some further bounds from these results, let us 

pause to show in some detail how we can find a formula hffLOCd as proclaimed 

in (1.4). Let a be an ideal of degree type at most d and let a E code(a). Using 

( i i i )  and (i),  we will show how to write down a formula Primed, such that  a 

belongs to IPrimedIK, if and only if, a = 27(a) is a prime ideal; from this the 

construction of hffLOCd is immediate. To express that  a is prime, we have to 

express by ( i i i )  that  for any two polynomials f and g of degree at  most D, we 

have that  fg C a implies that  one of them lies in a. Now, applying (i)  to the 

bound D, we can find a bound D', depending only on D and whence only on d, 

such that  fg  E a, if and only if, there exist polynomials qi of degree at most D p 

expressing fg as a linear combination of the generators of a. The same bound 

can be used to express that  f E a or g E a. We can now finish the construction 

of the wanted formula Primed, by observing that  the tuple of coefficients of a 

sum or a product of two polynomials f and g is easily expressed in terms of the 

coefficients of f and g. In summary, the main point is that  we only need a finite 

and fixed number of coefficients to describe the contents of ( i i i ) .  This number 

does depend on d, but on nothing else and so does our formula only depend on 

d. 

In the above discussion, we actually showed that  there are formulae IdMemd 

in the code a of an affine K-algebra A, in the code i of an ideal a of A with 

deg. type a < d and in the code u of a polynomial f over K of degree at most d, 

such that  f C a, if and only if, (a,u, i)  belongs to IIdltemdIK. Let us show that  

this can even be extended to the case of an affine local ring R. Suppose R is 

of the form (K[X]/I)p, where deg. t y p e / <  d and p a prime ideal containing I 

with deg. type p _< d. Let a be an ideal in K[X] with deg. type a < d and f a 

polynomial of degree at most d. Then f E aR, if there exists some q ~ p, such 

that  qf  E I + a. In other words, if we have that  

( a + I :  f )  cLp. 

Hence we have translated the ideal membership f E aR in the local ring R. 

into an ideal containment problem between ideals of bounded degree type in a 

polynomial ring, which is first order definable by what we said above. 

In the sequel we will not always give the details for writing down a formula, 

but content ourselves with merely giving the bounds necessary for doing so and 

leave the actual construction of the formula to the diligent reader. 
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2.4. THEOREM: For each d, there exists a bound D with the [ollowing properties. 
Let K be a field and let A be an aft/he (local) K-algebra of complexity at most 
d. Let a be an ideal of A of degree type at most d and let p be a minimal prime 

ideal of a. 

(v) The exponent of the Artinian local ring Ap/aAp is at most D, i.e., po is 

zero in Ap/aAp. 

(v• The length g(Ap/aAp) of Ap/aAp is at most D. In particular, if A/a has 

finite length, then this length is at most D. 

Proof: Note that by [Eis, Corollary 2.19] the ring Ap/aAp is indeed Artinian, 

i.e., of finite length. By (•177 there exists a D depending only on d, such that 

deg. type p _< D. Put g -- aAp n A. This is the p-primary component of a, and 

hence its degree type is at most D by (•177 Moreover, let f E A be such that 

f r 0 but f'~ -- 0 in Ap/aAp, for some n E N. This means that f ~ g but fn E 9. 
By (•177 already f o  C 9, i.e., f o  = 0 in Ap/aAp. This proves (v). 

As p is generated by at most D2 elements, where D2 only depends on d, it 

follows that the embedding dimension of Ap/aAp is also bounded by D2. Recall 

that the embedd ing  dimension of a Noetherian local ring (R, m), is the min- 

imal number of generators of m. By Nakayama's Lemma, the minimal number 

of generators of any finite R-module M is equal to the dimension of M / m M  

over the residue field k of R, see for instance [Mats, Theorem 2.3]. Hence, in 
particular, the embedding dimension of R is equal to the dimension of m/m 2. If 

R is moreover Artinian, then the length s of R equals the sum of the lengths 
of all mi/m i+1. Since the length of mi/m i+1 equals the number of generators of 

m s, we have an estimate 

~(mi/mi+l)< < i + r - 1  r - 1  

(note that the latter number equals the number of monomials of degree i in the 

r generators of ra). Moreover, mi/m i+1 = 0, for i bigger than the exponent e of 

R. Putting all this together while using (,), we see that 

(6) / ( R ) _ < ( e + r )  
r 

where e is the exponent and r is the embedding dimension of R. Therefore, using 

the bounds e < D1 and r <: D2, the first part of (vi) follows from the estimate 

(6) applied to the Artinian local ring R - -  Ap/aAp. 
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If A/a has finite length, use the above together with the equality 

eA(A/a)= ~ ea.(&/aA,), 
p E Spec A 

where the only non-zero contributions come from the minimal primes of a, and 

hence only D terms are non-zero by ( i i ) .  | 

Remark: The converse does not hold in general: to bound the length does not 

imply to bound the complexity. An easy counterexample is given by taking 

K = Fp. Then every finite field F of characteristic p is a quotient of Fp[X] 

of complexity equal to the degree (F : Fp) but obviously has length one as an 

Artinian ring. If K is algebraically closed, this is no longer an obstruction and 

one can easily show that any ideal a of K[X] has degree type at most d, if K[X]/a 
has length at most d + 1. Indeed, for then there is some tuple a = ( a l , . . . ,  ad) in 

K,  such that  

( X l  - - a l , . . . , X d - - a d )  d+l C a, 

so that  we can choose generators for a of degree at most d. 

2.5. Dennition: Let K be a field and A and B affine K-algebras. Let r A -+ B 

be a K-algebra morphism. We say that r has c o m p l e x i t y  at most d, if A and B 

admit representations A = K[X]/I and B = K[Y]/J, with deg. t ype /_<  d and 

deg. type J < d, and, if there exist Fi E K[Y] of degree at most d, such that the 

K-algebra morphism 

(7) K[X] -+ K[Y]: Xi ~-~ Fi(Y) 

induces the morphism r If A and B are affine local K-algebras, then we allow 

in (7) that Xi is sent to a fraction FjGi with both F~ and Gi of degree at most 

d. 

Next we will show a uniform version of Elimination Theory. Its short proof uses 

the following fact on Gr5bner bases. Let X = (X1 , . . . ,  X~) and Y = (111,--., Yt) 

be variables and let M be a submodule of K[X,Y]n. Suppose ~ l , . . - , # k  is a 

GrSbner basis of M with respect to an elimination ordering (see [Eis, Proposition 

15.29 and Exercise 15.37] for details). If # 1 , . . . ,  #l are those #i whose entries do 

not depend on the Y-variables, then # 1 , . . . ,  #l is a GrSbner basis of MN (K[X])'~. 

In fact, many of the bounds in this paper could equally well be obtained from 

the theory of Gr6hner bases. See for instance [Eis, 15.10] for an alternative 

approach to uniformity in commutative algebra via GrSbner bases (see also [Vas]). 
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2.6. THEOREM: For each d, there exists a bound D with the following property. 

Let K be a field and let X = (X1, . . .  ,Xd) and Y --- (II1,... ,II4) be variables. If 

b is an ideal in K[X, Y] of degree type at most d, then b ~ K[X] has degree type 

at most D. 

Proof: Let g l , . . . ,  g8 be a Grhbner basis for b (with respect to the lexicographical 

order on (X, Y)). As observed in (2.5) above, those g~ which do not involve the 

variables Y form a generating set of b n K[X]. It follows from [Eis, 15.9] that the 

degree of a Grhbner basis of b is bounded in terms of d = deg. type b. In fact, 

Mhller and Mora (see [Eis, loc. cit.]) show that one can take 

D = (d 2 + 2d + 2) 2d+l(d+l), 

when the lexicographic ordering is used. | 

2.7. THEOREM: For each d, there exists a bound D with the following property. 

Let K be a field and let A and B be a//ine (local) K-algebras of complexity at 

most d. Let r A --+ B be a K-algebra morphism of complexity at most d. If b is 

an ideal of degree type at most d, then b N A = r has degree type at most 

D. 

Proof." Let A and B have representations A = K[X]/I  and B = K[Y]/J,  with 

deg. type I _< d and deg. type J _< d (we leave the local case to the reader). Let 

Fi E K[Y] be of degree at most d, such that the K-algebra morphism 

K[X] ~ K[Y]: Xi ~ Fi 

induces the morphism r Suppose b is generated by the images in B of polyno- 

mials Gj c K[Y] of degree at most d. The image in A of a polynomial f E K[X] 

belongs to b N A, if and only if, f belongs to the ideal 

J + (G1,. . . ,Gs) + (X,  - F 1 , . . . , X d -  Fd) 

in K[X,Y].  Note that X~ = F~(Y) are the equations defining the graph of r 

The result now follows from (2.6). | 

3. Complexity of modules 

3.1. Definition: In Section 1 we also ~introduced the notion of complexity for a 

finitely generated module. However, in this section it will be more convenient to 

work with a slightly different notion, which we call deg-complex i ty .  In (3.8) 
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below, we then will show how both notions are connected to each other and that 

one can use either one for constructing formulae. Let A be an affine ring (or 

perhaps an affine local ring) and let M be a finitely generated A-module. Ex- 

tending the definition of the degree type of an ideal, we will say that  a submodule 

M of A d has d e g r e e  t y p e  at most d and we write deg. type M _< d, if A has 

complexity at most d and M is generated by d-tuples of degree at most d, i.e., 

by tuples in A d with entries of degree at most d. In case A is an affine local ring 

of complexity at most d, then we require that each entry is of the form p/q with 

both p and q of degree at most d. In the sequel we will only continue to treat 

the global affine case and leave the details for the local case to the reader. 

Note that  we bound simultaneously the length of the tuples and their degrees 

as well as the complexity of the base ring. By the same argument as in the ideal 

case, there exists a bound D (depending only on d), such that a submodule M of 

degree type at most d can be generated by at most D elements. For an arbitrary 

finitely generated A-module M, we say that its d eg o co m p lex i t y  is at most d, 

if there exists submodules N1 C N2 C A d, both of degree type at most d, such 

that  M ~ N1/N2. (Hence implicit is also that A itself has complexity at most d.) 

Clearly also the minimal number of generators of a module of deg-complexity at 

most d is  bounded in terms of d. Let M be as above of deg-complexity at most d. 

We can encode M by a tuple m -- (nl,n2) over K,  where ni is an enumeration of 

all coefficients of the generators of Ni C A d. We will indicate this by M ~ M (m) 

and we let code(M) be the collection of all tuples m for which A4(m) - M. This 

is consistent with our notation from Section 1 where N1 was taken to be the 

whole A d (and whence nl just lists the d generators (1, 0 , . . . ,  0) . . .  (0, 0 , . . . ,  1)). 

More generally, the set IMOddlg, which is functorially defined by the formula 

MOdd, consists of tuples (a, m) such that M -- J~4(m) is a finitely generated 

module over A -- ~4(a) of complexity at most d. We will write code(A, M) for 

the collection of all such tuples (&, m). Since each finite A-module M is a quotient 

A~/N of a free A-module, we see that each finite A-module has some finite deg- 

complexity, namely at most the maximum of deg. type N and r. Moreover, since 

the complexity of M was defined to be at most d eg . t y p eN  in (1.4), it follows 

that  the deg-complexity of M is always smaller than or equal to its complexity. 

Caution: Let M be a submodule of A d, then its degree type is bigger than or 

equal to its deg-complexity, since it is the quotient of itself by the zero-module. 

However, the opposite inequality does not hold. The easiest example is the ideal 

fA .  Its degree type is equal to the degree of f ,  but its deg-complexity is one, 

since it is isomorphic with A. 
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3.2. LEMMA: For each d 6 N, there is a bound D with the following properties.  

Let  A be an a//ine (local) ring of  complex i ty  at most  d. Let  M and M '  be 

submodules  o f  A d o[ degree type at mos t  d and let a be an ideal o f  A o f  degree 

type at mos t  d. Then the degree type of  the following submodules  are all bounded 

byD. 
(vii) aM, 
(viii) M + M ' ;  

(ix) ( M : A M ' ) = { a 6 A l a M ' C M } ;  

(x) M A M ' .  

Proo~ For ( v i i i )  the bound d suffices and for (v i i )  the bound 2d. To prove 

(ix),  let #1 , . . - ,  #s be a set of generators of M, where each #i = ( a i l , . . . ,  aid) 

with aij E A of degree at most d and let #~, . . . ,# ' s  be a set of generators of 

M' ,  where each #~ = (a~l, . . .  , a~d ) with a~j 6 A of degree at most d.* Then a 

polynomial f 6 A belongs to (M :A M') ,  if and only if, there exist rik E A such 

that 

(8) fa~j = r i la l j  + �9 �9 �9 + risasj,  

for all i = 1 , . . .  ,s and j = 1 , . . .  ,d. View this as a linear homogeneous system 

of equations in the unknowns f and rik with coefficients air and a~j. By (i)  of 

the Schmidt-van den Dries Theorem (2.2), the set of solutions ( f ,  rik) of (8) is 

generated by solutions of degree bounded by some D. In particular, there exist 

f l , . . . ,  ft  of degree at most D, such that each f as above is a linear combination 

of these fi. In other words, we have that (M :A M')  -= ( f l , . . . ,  f t)  has degree 

type at most D. 

To prove (x), a similar argument applies. With notation as before, a d-tuple 

u -- ( b l , . . . ,  bd) belongs to M N M' ,  if and only if, there exist ri,r~ C A,  such 

that 

bi r la l i  +"  + rsasi i i i I :_ .. = f l a i l  + �9 + rsasi~ 

for all i = 1 , . . . ,  d. As a homogeneous linear system of equations in the unknowns 

bi, ri and r~, with coefficients aij and a~j, this has again a generating set of 

solutions of degree bounded by D, as above. 1 

3.3. COROLLARY: For each d 6 N, there is a bound D wi th  the following 

properties.  I f  M is a f initely generated A-modu le  o f  deg-complexi ty  at mos t  

* Note that the number s can be bounded in terms of d only, and hence there is no 
harm in taken the same number everywhere. In the sequel, we will frequently do 
so without further warning. 
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d, where A is an aft/he (local) ring, and a is an ideal of A of degree type at 

most d, then the modules M / a M  and AnnM(a) = { # E M [ #a = 0 } have deg- 

complexity at most D. Moreover, AnnA(M) has degree type at most D. 

If, moreover, F is a (d x d)-matrix over A of degree at most d O.e., all its 

entries have degree at most d), then the deg-complexity of Z and C is at most D, 

where Z (respectively, C) is the kernel (respectively, cokernel) of the morphism 

F • induced by F, that is to say, Z and C are given by the exact sequence 

O_+ Z _ +  M d F • M d -~ C --+ O. 

Proof: Let N2 C N1 C A d be submodules of degree type at most d, such that 

M ~- N1/N2. We have that M / a M  ~- N1/(aN1 + N2). By (3.2), we have that 

aM + N2 has degree type at most D, where this bound only depends on d. 

Therefore, the deg-complexity of M/aM is at most D. 

Similarly, AnnM(a) is isomorphic to the module ((N2 :A aA d) ;7 N1)/N2 and 

the ideal AnnA(M) is equal to (N1 :A N2). Using (3.2) once more, we again 

conclude that the deg-complexity of AnnM (a) (respectively, the degree type of 

AnnA(M)) is bounded in terms of d. To prove the last statement, use (•177 of 

(2.2) and the fact that Z TM (F~v,)-I(Nd)/N d and C ~ gd/(ImF~v, +Nd), where 

F~v 1 denotes the morphism 

F • N( N(. m 

Remark: Note that if M has deg-complexity at most d, then any associated 
prime p of M has uniformly bounded degree type. Indeed, p is then an associated 

prime of AnnA(M) and the result follows from (3.3) and (i• of (2.2). 

3.4. COROLLARY: For each d E N, there is a bound D with the following 

properties. Suppose K is a field and A is an a/fine (local) K-algebra of complexity 

at most d. Let M be a finitely generated A-module of deg-complexity at most 

d. If M has finite length, then its length s is at most D. More generally, 

if p is a prime ideal of A such that Mp has finite length as an Ap-module, then 

eAp (Mp) < m. 

Proo~ Let a = AnnA(M) and let r be the minimal number of generators of M. 

Note that r is uniformly bounded in terms of d. If M has finite length then its 

dimension is zero. Since the dimension of M is by definition the dimension of A/a, 

it follows that also A/a has finite length (see [Eis, Corollary 2.17]). Moreover, 

since there is a surjective morphism (A/a) T ~ M, we see that ~(M) <_ re(A/a). 
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By (3.3) there is some bound D depending only on d, such that deg. type a ~ D. 

By (2.4) it follows that also g(A/a) is uniformly bounded and whence also g(M), 

as required. 

A similar argument works for the general case. Firstly, observe that if Mp 

has finite length as an Ap-module, then p must be a minimal prime ideal of 

a = AnnA(M), see for instance [Eis, Corollary 2.18]. Since deg. t ypea  < D, 

it follows then from (2.4) that there is also a uniform bound for the length of 

Ap/aAp. As above, we have an estimate for the length of Mp as an Ap-module 

by re(Ap/aAp). This yields the wanted uniform bound. | 

Remark: Again the converse is not true in general, neither in the local nor in 

the global affine case, albeit for different reasons. The obstruction in the former 

case comes from the fact that  the residue field is in general transcendental over 

K and in the latter case the obstruction comes from finite field extensions of K.  

Of course, by taking K algebraically closed, we overcome the latter obstruction 

and one can show that if M is a module of finite length at most d over an 

affine K-algebra A of complexity at most d, with K algebraically closed, then its 

complexity is at most D, for some bound D depending only on d. However, this 

assumption is not sufficient for the local case, as the following example shows. 

Let R = K ( X ) ,  X a single variable, so that according to our definitions, R has 

complexity at most 1 (over g ) .  Let Sn = K(X)[Y] / (Y  2 + X n + 1), which is 

then a finite R-module of length 2, whereas its complexity is n. However, if we 

view S~ as an affine K(X)-algebra,  then its complexity (over the field K ( X ) )  is 

just 2. One can show in more generality that if R is an affine local ring (over 

an arbitrary field) of complexity at most d and M an R-module of length at 

most d, then taking complexities with respect to the residue field k of R (rather 

than with respect to K),  we do have that M has complexity at most D, for 

some bound D depending only on d. This follows quite easily from the fact that  

S = R~ Annn(M)  has length at most d 2 (embed R in d copies of M via a set 

of d generators of M) and hence S ~- K[Z]/I, where I is an ideal containing 

(Z1, . . . ,  Zs) d2. One calculates that then M has complexity at most d 3 viewed as 

an S-module. We then conclude with an application of (3.9) below. 

3.5. PROPOSITION: For each d E N, there is a bound D with the following 

property. Suppose A is an affine (local) ring of complexity at most d and M 

a finitely generated A-module of deg-complexity at most d. If  M has finite 

length, then its socle SocM (i.e., the sum of all simple submodules of M)  has 

deg-complexity at most D. 

Moreover, for each d, l E N, there exists a formula (Len=l)d with the following 
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property. Suppose K is a field and A an atone (local) K~algebra of complexity 

at most d. Let M be a finitely generated A-module of deg-complexity at most d. 

Take a E code(A) and m E code(M). Then (a,m) belongs to [(Len=/)dlg, if  and 

only if, M has length l as an A-module. 

Proof'. Let K be a field and (a,m) a tuple belonging to [Modd[K. Put  A = A(a) 

and M -- ~4(m). If M has finite length then all prime ideals containing its 

annihilator are maximal and there are only finitely many such primes, see [Eis, 

Corollary 2.17]. Since any simple module is of the form A/m, with m a maximal 

ideal, one calculates that 

SocM = ~ AnnM(m). 
AnnA(M)Cm 

Recall that  AnnM(m) is the set of all # E M, such that #m = 0. By ( i i )  of (2.2) 

and (3.3), it follows that Soc M has deg-complexity at most D, where D is some 

bound depending only on d. 

We will construct the formulae (Len=l)d by induction on l E N. For 1 = 0, 

we have to express by means of the code m = (nl,n2) of M that  M is the 

zero module. By assumption, M is of the form N1/N2, for some submodules 

N2 c N1 C A d of degree type at most d and we just need to express that  N1 -- N2, 

i.e., that  the generators of N1 encoded by nl are all linear combinations of the 

generators of N2 encoded by n2. Another application of (i)  of (2.2) finishes then 

the construction of (Len=0)d. 

For arbitrary l > 0, we will define (Len=l)d as the formula expressing that  

there exists a non-zero # E SocM such that M/A#  has length l - 1. Here is 

in some detail the construction. From the proof of the first part, it follows that  

there exists some/z E N1 C A d of degree at most D, such that its image in M 

is a non-zero element of Soc M. Therefore, we must claim that there exists a 

tuple b encoding a d-tuple of polynomials # of degree at most D, such that  # 

viewed as an element of A d belongs to N1 but not to N2 and Ptt is contained 

in N2, for some minimal prime p of M. The latter can be expressed also by a 

formula, as we know from ( i i )  that  any minimal prime of M will have degree 

type at most D. Hence the image of such a # in M is indeed a non-zero element 

of the socle. Finally, assume v is the code for the quotient module M/A#  (which 

can easily be derived from the codes m = (nl,n2) and b), then we require that 

(a,v) belongs to ] (Len=l-  1)~[K. This finishes the construction of (aen=l)d and 

it is now immediate by induction that this formula encodes that  M has length I. 
| 
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3.6. COROLLARY: For each d E N, there exists a formula FinLend with the fol- 

lowing property. Suppose K is a field and A an agiine (local) K-algebra of com- 

plexi ty  at most  d. Let M be a finitely generated A-module of deg-complexity at 

most  d. Taken C code(A) andre E code(M). Then (a,m) belongs to IFinaendlg, 

i f  and only if, M has finite length as an A-module. 

Proof." By (3.4) there is a bound D depending only on d, such that if M has 

finite length, then this length is at most D. Hence the formula 

V (Len=i)d 
i < D  

expresses that M has finite length. 1 

3.7. PROPOSITION: For each d E N, there exists a bound D with the following 

property. I f  A is an affJne (local) ring of complexity at most  d and M a finitely 

generated A-module  of deg-complexity at most  d, then M has a syzygy  of deg- 

complexity  at most  D, i.e., there exists a short exact sequence 

(9) 0 -+ Z---~A s >M -+ O, 

with s <_ D and deg. type Z < D. 

Proof: Let M ~ N1/N2, with N2 C N1 C A d submodules of degree type at 

most d. Let # 1 , . . . ,  #s C A a be tuples of degree at most d generating N1. Let F 

be the (s • d)-matrix with rows the #i. Viewing F as a morphism 

F • : A s --+ Ad: o ~-+ oF 

we see that  N1 = ImF • Therefore, if Z = (F•  then the sequence (9) is 

indeed exact, where A s ~ M is the composed morphism A s ~ N1 -~ M. Now, 

an s-tuple a C A s belongs to Z, if and only if, oF  C N2. Writing this out in a 

set of generators of N2 of bounded degree, we obtain once more a homogeneous 

linear system of equations with all coefficients of degree at most d. Another 

�9 application of (2.2) yields a bound D, such that Z is generated by tuples each of 

which have degree at most D. 1 

3.8. Remark: In the course of the above proof we obtained the following. For 

any A-module M of complexity at most d, we can find an (s x s)-matrix �9 with 

entries of degree at most D and s _< D, such that the sequence 

• 

A ~ > A ~ _ + M ~ O  
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is exact. 

In other words, if M has deg-complexity at most d, then its complexity, as 

defined in (1.4), is at most D. We have already observed that  the deg-complexity 

is always at most the complexity, so one complexity notion can be bounded in 

terms of the other. We will express this by saying that  both complexity notions 

are m u t u a l l y  b o u n d e d .  If two complexity notions are mutually bounded then 

one can translate bounds for one notion in terms of the other. Therefore, in the 

sequel, deg-complexity will only play a minor role arid we will from now on look 

for bounds in terms of the complexity of a module. 

3.9. THEOREM: For each d E N, there exists a bound D with the following 

property. Suppose A and B are affine (local) rings of complexity at most d and 

r A -+ B a K-algebra morphism of complexity at most d. Let F be a (d x d)- 

matr ix  over B with cokernel M,  so that we have an exact sequence 

B d r •  --~ O. 

Suppose that M is also generated over A by the 7r(ei), where { e l , . . .  , ed} is the 

standard basis of B d. Then M has complexity at most D viewed as an A-module. 

Proof: Write A = K [ X ] / I  and B = K [ Y ] / J  with X = ( X i , . . . , X d )  and 

Y = (Y1, . . . ,  Yd), and where deg. type I < D and deg. type J < d. Let C denote 

the image of F x and let H be the submodule of A d of all d-tuples a = (al,  . . . ,  ad) 

for which r  = ( r  r lies in C. We then have a sequence 

(10) 0 --+ H )Ad--5+M --+ 0, 

where we still have written 7r for its restriction to A d. By our assumption the 

latter morphism is surjective and it is now easy to verify that  (10) is indeed exact. 

Hence the s tatement  is proven once we showed that  deg. type H <_ D, for some 

bound D depending only on d. To prove that  deg. type H <_ D, take a Grhbner 

basis foz H as explained in (2.5) and use the same argument as in the proof of 

(2.7); we leave the details for the reader. | 

4. B o u n d s  in cohomology 

A highly recommendable general reference for the material in this Section is 

Appendix 3 in [Eis]. 
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4.1. Definition: Let A be an affine (local) ring. Let ~ be a functor (covariant 

or contravariant) on the category of finitely generated A-modules. We say that  

is b o u n d e d ,  if for each d, there exists a bound D such that the complexity 

of ~(M)  is at most D, for any finitely generated A-module M of complexity at 

most d. 

We say that  the functor ~ is l inear ,  if it is additive and if for any finitely 

generated A-module M and any a E A, we have that multiplication by a on M 

is sent under ~ to multiplication by a (or, perhaps by - a )  on ~(M),  i.e., that  

~(a • -- + a  • Let us write 7i,M: M ~ M d (respectively, 7ri,M : M d ~ M )  for 

the embedding in (respectively, projection onto) the i-th coordinate. Then any 

(d • d)-matrix F = (a~j) induces a morphism F • : M d ~ M d and we have that  

• 
(11) F • : ~ 7i ,Moa~j~ 

l<_i,j<d 

Applying ~ to both sides of (11) and using linearity, we conclude that  also 

~(F • = F x in the covariant case and ~(F • -- (trF)• in the contravariant 

case, where trF denotes the transpose of F. 

Again, what we really want is to make this definition independent of the affine 

algebra as well as of the base field. Unfortunately, category theory does not have 

the right formalism for this, so that we will have to make do with the following 

vague statement. Suppose that ~ is a rule which assigns to an arbitrary affine 

ring A over some field K in some consistent way a functor (respectively, a bi- 

functor) ~A on the category of finitely generated A-modules. We call ~ bounded, 

if for each d E N there exists a bound D = D(d)  such that for any affine ring A of 

complexity at most d and any finitely generated A-module M (respectively, any 

two finitely generated A-modules M and N) of complexity at most d, we have 

that  ~A (M) (respectively, ~A (M, N)) has complexity at most D. In other words, 

the ~A are bounded (bi)functors and their bounding functions only depend on 

the complexity of A. Of course the vague term here is in a consistent way and we 

can only say that  all families of functors that will be considered in this paper fall 

in that  class. For example, the bi-functors. | and HomA (., .) will be considered 

consistent families. Henceforth, we will adopt the following strategy to deal with 

this vagueness. We will prove the boundedness of a functor and check that  the 

bounding function D(d)  only depends on the complexity of the base ring. This 

then allows us to view the functor as a member of a consistent family. A similar 

approach will be made when constructing formulae. 

The following lemma is an easy consequence of (2.2), but it is crucial for 

obtaining bounds in cohomology. 
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4.2. LEMMA: For each d E N, there exists a bound D with the following property. 

Suppose A is an aff/ne (local) ring of complexity at most d and M a finitely 

generated A-module of complexity at most d. Let F and A be (d x d)-matrices 

of degree at most d. I f F A  = 0, then the homology module H = K e r A X / I m F  • 

of the complex 

M d _.__+r x M d AX) M d 

has complexity at  most D. 

Proof: We will reason on the deg-complexity of M, which also is bounded by 

d. So, there exist submodules N2 C N1 C A d of degree type at most d, such 

that  M ~ N1/N2. One calculates that  H is then isomorphic with the quotient of 

H1 = { v e N d ] vA e N2 d } by its submodule/-/2 = F x (N d) + N d. Using (i)  of 

(2.2), it follows that  there exists a bound D on the degree type of both H1 and 

//2 and whence on the deg-complexity of H. We then finish off by an application 

of (3.8). . 

4.3. THEOREM: Let A be an a[t~ne (local) ring. Let ~ be a linear functor 

(covariant or contravariant) on the category of finitely generated A-modules. 

Assume that either ~ is covariant and right exact or contravariant and left exact 

and let Si ~ denote its right derived functors in the former and its left derived 

functors in the latter case. Then each S i ~ is bounded, for i = O, 1, . . .  (and hence 

in particular ~ itself is bounded). 

More precisely, there exist, for each d, i C N, a first order formula i-Deriv[~]d, 

only depending on d, i and the code of A, with the following properties. For 

each tuple m, we can find a tuple v such that (m, v) belongs to ]i-Deriv[~]d[K. 
Moreover, for any tuple (m, v) belonging to li-Deriv[~]dlg, we have that Y ~- 

S i ~(M) ,  where M = M ( m )  and Y = M(v) .  

Proof: Let us just t reat  the covariant case; for the contravariant case one only 

needs to reverse the arrows. Let M be a finitely generated A-module of complex- 

ity at most  d. So we have an exact sequence 

A d r• --~ M --4 0 

with F of degree at most d. Let M1 be the image of F x so that  its degree type 

is at most d. By (3.7), there exists an exact sequence 

O -+ M2 ~A D'- ~M1 -~ 0 
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with M2 of complexity at most D1, where D1 only depends on d and on the 

complexity of A. Repeating this process, we can construct an exact sequence F. 

given by 

(12) 
F x F x F x 

Pk+l--+Pi .. ~ F o ~ M ~ O  

with each Fj a matrix of degree at most Di (depending only on d, i and the 

complexity of A), and each Fj a finite free A-module of rank at most Di, for 

all j < i. Using linearity, the exact sequence Fo transforms into a complex 

~(Fo) where the morphisms are still given by the matrices Fj. Therefore, by an 

application of (4.2), the latter complex has homology of complexity at most D~, 

for some bound D~ > Di depending only on d and the complexity of A. The 

proof of the first statement follows in view of the identity Hi(~(F.)) = S i ~(M). 

Moreover, the matrices in the exact sequence (12) have all bounded degree at 

most Di. To write down the formula i-Deriv[~]d in the code v of some module 

we do the following. We proclaim the existence of a free complex F. of length 

i + 1 as in (12) with all matrices Fj, for j _< i + 1, of degree at most Di, such 

that Fo is free and v is a code for Hi(~(Fo)). | 

Remark: If ~A is a consistent family of functors, then the formula i-Der• 

can be refined to a formula expressing for a tuple (a, m, v) that 

3,4 (v) - S i ~ ( a )  (M (m)). 

Let us just work this out for the bi-functors | and Hom. 

4.4. COROLLARY: The bi-functors TorA( ., .) and Ext , ( . ,  .) form bounded con- 

sistent families of functors. There are formulae (Tori)d and (Exti)d with the 

following properties. Let K be a field. Ira tuple (a,m,n,  v) belongs to I(Wori)dlg 

(respectively, to then M(v) is isomorphic with 

Torff (a) (A4 (m), A4(n)), respectively, Ext,(a)(A4 (m), .M (a)). 

Moreover, for each triple (a, re, a) we can find at least one tuple It, such that 

(a, m, n, v) belongs to [(Tori)~t[K (respectively, to I(Exti)dlK ). 

Proo~ The proof is similar to the one for (4.3). Let us just treat the case of 

the Tor-functor. Let A be an affine (local) ring of complexity at most d and 

let M and N be finitely generated A-modules of complexity at most d. Put  

-- �9 | N. The exact sequence Fo of (12) transforms into a complex ~(Fo). 
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Each module in this complex is a Cartesian product of N, except for the last one, 

which is M | N. Therefore, there is some bound Dr only depending on d, such 

that the complexity of the complex ~(Fo) is at most Di. Hence its homology 

has also bounded complexity by (4.2). The formula (Wori)d is now obtained by 

proclaiming the existence of matrices F~ making the sequence Fo exact. This will 

involve the codes a E code(A), m E code(M) and n E code(N) and a bounded 

number of new variables describing the coefficients of these matrices. We then 

can construct the code v for the i-th homology module of ~(F.)  using some 

m E code(M). We leave the details to the reader. I 

4.5. THEOREM: For each d,i E N, there exists a bound Di with the following 

property. Suppose A is an atone (local) ring of complexity at most d. If M and 

N are finitely generated A-modules of complexity at most d for which M | 

N (respectively, HomA(M, N))  has finite length, then their i-th Betti number 

J3A(M,N), defined as the length of TorA(M,N) (respectively, their i-th Bass 

number piA(M, N), defined as the length of Ex t , ( M,  N)), is bounded by Di. 

More generally, if p is a minimal prime ideal of M | A N, then flap (Mp, Np) _< 

Di (respectively, #Ap Mp,Np) <_ Dr). 

Proof: Immediately from (4.4) and (3.4). For the second statement, observe 

that deg. type p is also uniformly bounded, by the remark following (3.3). I 

4.6. COROLLARY: For each d, i E 1~, there exists a bound D~ with the following 

property. Suppose A is an afline (local) ring of complexity at most d. If M is 

a finitely generated A-module of complexity at most d and p a prime ideal of 
degree type at most d, then the length j3Ap(Mp) of TorAp(M~,k(p)) is at most 

Di. Here k(p) denotes the residue field A~/pAp of p. 

Proof: Let H = TorA(M,A/p). By (4.4) its complexity is uniformly bounded 

in terms of d. However, flap (Mp) is just the length of Hp and p is a minimal 

prime of H, so that  we are done by an application of (3.4). I 

In fact, using (3.5) we can write down formulae expressing in the code of the 

modules and the base ring (having complexity at most d) that their i-th Betti or 

Bass number equals a prescribed value 1. See the proof of (5.1) below for some 

more details. We finish this section with one more cohomological bound. 

4.7. THEOREM: For each d E N, there exists a bound D with the following 

property. Let A be an affine (local) ring of complexity at most d and M a finitely 

generated A-module of complexity at most d. If a is an ideal of degree type at 
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most d, then the Koszul homology group Hi(a, M) has complexity at most D, 

for each i. 

Proof: Let a = ( f l , . . . ,  fs) with each fi of degree at most d. The n-th term in 

the Koszul complex K . ( f )  of f -- ( f l , . . . ,  f~) is given by the morphism d: K~ 

K~- I  defined as 
n 

k-1  
d(ei,...i,) = E ( - 1 )  fi~eix...Tk.../n 

k=l  

where Kn is the free A-module with basis ei~...i.. In particular, all the matrices in 

the Koszul complex K , ( f )  have degree at most d, since their entries are =hfi. By 

(4.2) the homology H~(a, M) of the complex K . ( f ) |  has therefore complexity 

at most D, for some bound D depending only on d. II 

5. F i r s t  o r d e r  de f inab le  p r o p e r t i e s  

In this section we will use the bounds obtained in the previous section to show 

how various properties can he made first order definable. We first need a result 

on the definability of the height and the depth of an ideal. Depth has an easy 

cohomological interpretation, but height does not. The next best thing would 

be to define height via the Hilbert polynomial. Nonetheless, the following argu- 

ment is more elementary, as it only uses Krull's Principal Ideal Theorem, and 

so we prefer to present it here. We will return to the definability of the Hilbert 

polynomial in a future paper [Sch 2]. 

5.1. PROPOSITION: For each d,h E N, there exists a formula (Height = h)d 

with the following property. Let K be a field, let A be an afflne (local) K-  

algebra of complexity at most d and take a C code(A). Let a be an ideal in A 

of complexity at most d and take i E code(a). Then the tuple (a, i) belongs to 

](Height ---- h)d]K, i f  and only if, a has height h. 

Similarly, there exists a formula (Depth = h)d, so that the tuple (a, i) belongs 

to I(Depth ---- h)d]K, if  and only if, a has depth h in A. 

Proof: We will construct the formulae (Height = h)d by induction on h. If 

h -- 0, then we seek to express in a first order way that there exists an associated 

prime p of a, such that p is a minimal prime of A. This is indeed equivalent 

with a having height zero (note that every minimal prime ideal of an ideal I is in 

particular an associated prime ideal of I) .  By (2.2), there exists a bound D such 

that  for any associated prime p of a and for any associated prime g of A, we have 

that  p and 9 have degree type at most D. Moreover, by (3.3), we can enlarge D 

so that the annihilator ideals AnnA(9) and (a : p) also have degree type at most 
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D. Therefore, we will claim the existence of a tuple p belonging to ]PrimeDIK 

(so that p = 27(p) is a prime ideal; see (2.3)), with the properties that a C p and 

(a : p) ~ 0, and, moreover, that for any other tuple q belonging to ]PrimeDIK, if 

Z(q) C p, then in fact Z(q) = p. The latter condition means that p is a minimal 

prime (of A), whereas the former means that it is an associated prime of a. It 

should now be clear how to write down the formula (Height = 0)d. 

For general h > 0, we do the following. Let a = ( f l , . . . , f s )  where the fi 

have degree at most d. Let aj be the ideal generated by f l , . . . ,  f j ,  where we put 

a0 = (0). Let t be the maximal value of j less than s, for which aj has height 

strictly smaller than the height of a. By Krull's Principal Ideal Theorem the 

height of at is then exactly one less than the height of a. Therefore, the formula 

(Height = h)d is defined as follows. A tuple (a,i) belongs to I(neight  = h)dlg, 

if and only if, it does not belong to any of the ](Height = i)d[K, for i < h, and, 

for some t < s, we have that at has height h - 1, whereas a(A/at+l) has height 

zero. Indeed, if this holds, then clearly the height of a is at least h by the former 

condition. As a(A/at+l) has height zero, it follows that a and at+l have the same 

height. As at+l has height at most the height of at plus one, that is to say, at 

most (h - 1) + 1 = h, it follows that a has height at most h. It should also be 

clear that  the above statement can be translated in a first order formula using 

induction. Note that deg. type aj < d and all A/aj  have complexity at most d. 

For the construction of (Depth = h)d we will use the characterisation [Mats, 

Theorem 16.7] that a has depth h, if and only if, all EXt~A(A/a, A) vanish for 

i < h whereas Exth(A/a ,  A) r O. Using (4.4) we can make first order statements 

about the modules Ext~4(A/a, A). In particular, using (3.5) we can express their 

vanishing in the tuples a and i by first order formulae: simply express that the 

length of the module is zero. | 

5.2. COROLLARY: For each d, there exists a bound D with the following prop- 

erty. Let A be an af/ine (local) ring of complexity at most d and a an ideal in A 

of degree type at most d. Then there exist xl ,  . . . ,x8 E a of degree at most D, 

such that (Xl , . . . ,  x~) is a maximal A-regular sequence in a (where s equals the 

depth of a). 

Proof'. It suffices to show that for fixed d and s, we can find a bound on the 

degrees of an A-regular sequence in a, provided that the depth of a is at least s. 

Fix some d, s, m E N. Let RSd,~,m be the formula expressing the following two 

facts in the codes of A and a and in the codes of s polynomials fi of degree at 

most m. 

�9 The polynomials f l , - - . ,  f~ lie in the ideal a. 
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�9 For each i = 1 , . . . ,  s, if g is a polynomial of degree at most m such that  

fig lies in the ideal Ii-1 generated by f l , . . . ,  f i-1,  then already g E Ii-1. 

Using the fact that ideal membership can be expressed in a first order way by 

(2.3), it follows that such a first order formula RS4,s,m does indeed exist. More- 

over, if RegSeqd,s,m is the formula expressing in the code of A and a that there 

exists an s-tuple ( f l , . . . ,  f~) in a of degree at most m, such that RSd,~,,~ holds, 

then a has depth at least s, if and only if, one of the RegSecld,~,m holds. 

In other words, for fixed s and d and for every field K we have that 

t(Dept h = S)dlK = 0 1RegSeq,i,s,mtK " 
~n(w 

By first order compactness (1.2), there exists an m0, such that 

( D e p t h  ---- S)d ~ RegSeqd,s ,m 0 

is true in any field K. This means precisely that there exists a regular sequence 

of length s in a of degree at most this m0, as required. | 

5.3. THEOREM: For each d G N and each property P_ of local rings listed below, 

there exists a corresponding formula Pd with the following property. Let K be a 

field and R an aff/ne local K-algebra of complexity d. Then R has the property 
P, if and only if, there is a tuple a e code(R) which belongs to IPdlK. Here P is 

either one of the following properties: 

(xi)  regular; 
( x i i )  complete intersection; 

(xiii) Gorenstein; 

(xiv) Cohen-Macaulay. 

Proof: Let K be an arbitrary field and let R be an affine local K-algebra of 

complexity at most d. Let a E code(R). Let k be the residue field of R, which 

has then also complexity at most d. 

To prove (x i i ) ,  use the criterion [BH] that R is a complete intersection, if and 

only if, 

(13) 

where h is the dimension of R. 

some D depending only on d. 

By (4.6), each quantity in (13) is bounded by 

Let us show in some detail how to write down 
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the required formula. Let W be the collection of all triples (bl, b2, h) E N 3 with 

bl, b2, h _< D and such that 

The formula CI d has then the following form, 

V bl = ~ ( k )  A b2 = Z~(k) A h = dimR. 
(bl ,b2,h)6W 

As written down, this is not yet a first order formula, but it can easily be turned 

into a genuine one. For the statement h = dimR, this is easily done by (5.1). 

Just observe that R = Ap for some affine algebra A and some prime ideal p of 

height h with deg. typep < d. Let us show how to express that bl = r (see 

also the remark following (4.6)), the other cases are similarly dealt with. Let 

p C code(k), where we view k as an R-module, i.e., 3d(p) = k. This tuple is 

easily derived from a and so we assume that p below is given in terms of a. Then 

bl = j3R(k) is encoded by 

(3v) [(Torl)d (a, p, p, v) A (Len=bl)D (a, v)] 

where we used the formulae defined in (4.4) and (3.5). 

For (xi), observe that by Serre's criterion R is regular, if and only if, its residue 

field k has finite projective dimension. As this projective dimension is then at 

most the dimension of R and hence at most d, the regularity of R is equivalent 

with the vanishing of TOrdR+l(k, k) (see [Mats, w for details). As the latter 

module has complexity at most D, for some bound D depending only on d, we 

can express the vanishing of TOrdR+l (k, k) by means of a first order formula Kegd, 

using (3.5) and (4.4) as above. 

For ( x i i i ) ,  we use the criterion [Mats, Theorem 18.1.(3)] that R is Gorenstein, 

if and only if, Ex t , (k ,  R) vanishes for some i > h and hence, if and only if, 

Extd+l(k, R) vanishes, as h < d. For (xiv), we let eNd express that the height of 

R = Ap equals its depth and this is easy by means of (5.1). | 

5.4. PROPOSITION: Let (R,m) be a Noetherian local ring with residue field k 

and let M be a finite R-module. Then M has finite injective dimension, if and 

only if, a11 Ext~+x+i(k, M) vanish, for i = 0 , . . . ,  h, where t is the depth of R and 

h its dimension. 

Proof: Assume first that  M has finite injective dimension. By [BH, Theorem 

3.1.17] its injective dimension is then equal to t and in view of [BH, Proposition 

3.1.14] it follows that  all .,t+l+i~,_ Ex~ R try, M) vanish. 
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Ext t+i+l (k M) = 0, we con- Conversely, applying [BH, Proposition 3.1.13] to R ~ , 

clude that Ext~+~(R/p, M) vanishes, for each prime ideal p of height h - 1 and 

each i < h. Successively applying this trick shows that Ext~+l(R/p, M) = 0 for 

all prime ideals p of R and whence by [BH, Corollary 3.1.12] that M has injective 

dimension at most t. | 

5.5. COROLLARY: For each d, there exists a first order formula Fin In jd  with 

the following property. Let K be a field and R an a/fine local K-algebra of 

complexity d. Let M be a finitely generated R-module of complexity at most d. 

Let a �9 code(R) and m �9 code(M). Then (a,m) belongs to IFinInjdlK , / / 'and 

only if, M has t~nite injective dimension as an R-module. 

Proof: By (5.1), both the depth and the dimension of R are expressible by 

means of a formula. Now use the criterion (5.4) together with (3.5) and (4.4) in 

the same way as they were used in the proof of (5.3). | 

5.6. THEOREM: The validity of the Bass Conjecture for local rings essentially 

of finite type over an algebraicedly dosed field of positive characteristic implies 

the validity of the conjecture for local rings essentially of finite type over an 

algebraically closed fidd of characteristic zero. 

Remark: The Bass Conjecture states that if a Noetherian local ring admits a 

finitely generated module of finite injective dimension, then it is Cohen-Macaulay. 

In fact, the converse also holds and its proof is rather easy (see remark below). 

This conjecture is now proven in full generality by Roberts'  New Intersection 

Theorem, but  was originally proven by Szpiro and Peskine using their New In- 

tersection Theorem in positive characteristic (see also (5.8) below). The same 

authors then derived the zero characteristic case using an ad hoc lifting proce- 

dure, which we have replaced here, at least for the affine case, by the Lefschetz 

Principle. 

Proof: Fix some d, e �9 N. Let K be an arbitrary field and R an affine local 

K-algebra of complexity at most d. Let a �9 code(R). Using (5.5), we can write 

down a first order formula F i n I n j ,  expressing that R admits a finitely generated 

module of complexity at most e and of finite injective dimension. Let Ba-qSd,e be 

the formula 

Vinlnje(& , m) -+ CMd(& ). 

Hence the Bass Conjecture for affine K-algebras simply states that all BaSSd,e 
are true in K and our claim then follows by the Lefschetz Principle, as explained 

in Section 1. | 
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Remark: A dual version of the Bass Conjecture is the statement that  any local 

ring admitting a module of finite length and finite projective dimension, is Cohen- 

Macaulay (see for instance [Str, Proposition 9.1.10]). We can construct formulae 

B s s  d only depending on d, such that this dual version is equivalent with all 

B S S d  being true. Indeed, if R is Cohen-Macaulay, then a module of finite length 

and finite projective dimension can be constructed in the following way: let 

(Xl , . . . , xh )  be a maximal regular sequence in R and let B = R / ( x l , . . . , x h ) .  

Then B is zero dimensional and whence has finite length and, as an R-module, 

its projective dimension is d. It follows from (5.2) that we can find some D1, only 

depending on d, such that R admits a maximal regular sequence (Xl , . . . ,  Xh) of 

degree at most Da. Hence from (2.4), there exists D, only depending on d, such 

that  B = R/(x~ , . . . ,  xh) has length at most D. Therefore, we can take for BS8 d 

the formulae 

(3m) [FinProj D (a, m) A FinLenD (a, m)] --+ CMd (a), 

where FinProjr  is a formula expressing that a module of complexity at most 

e has finite projective dimension (see (6.3) below for how to write down such 

a formula, taking into account that projective dimension never exceeds Krull 

dimension) and where FinLene is the formula from (3.6) expressing that the 

module has finite length. 

5.7. Definition: Let A be an affine (local) ring. A complex F.  of the form 

F x F~_ 1 F x F • 
( Fo) O--+ F~ -Z-~ F~_I ---+ ... :A-~F1 -:-s 

is called a f ini te  free complex  of length s, if all F~ are finitely generated free 

A-modules. We say that  Fo has complexity at most d, if A has complexity at 

most d, every matrix Fi has degree type (and dimensions) at most d and s _< d. 

Put  
8 

ri = E ( - 1 ) J - i r a n k F j ,  
i=j  

called the e x p e c t e d  r a n k  of F x i , and let ~ i (Fo )  be the r r t h  Fitting ideal 

~ , ( F  x) of the matrix Fi (see (6.1) below for the definition of Fitting ideal). 

The Buchsbaum-Eisenbud Acyclicity Theorem (see [BH, Theorem 1.4.12]) states 

that  Fo is acyclic, if and only if, ~ i ( F ~  has depth at least i, for i = 1 , . . . ,  s. 

Recall that  Fo is called acyclic,  if 

FX x F x Fx 

O -+ Fs -L~ Fs_ I ~ '> �9 . . - : -~F1 Fo 
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is exact, i.e., if Fo is a free resolution of the cokernel of F~. 

In case (R, m) is a Noetherian local ring of positive characteristic p, another 

acyclicity theorem is the New Intersection Theorem by Szpiro and Peskine. It 

simply states that  if the homology groups of F.  have finite length and s is strictly 

smaller than the dimension of R, then Fo is exact. The authors then lift this 

result to the case of a local ring containing a field of zero characteristic by means 

of Artin Approximation. For the next theorem we assume the validity of the New 

Intersection Theorem in positive characteristic and we show how to lift this via 

first order definability to zero characteristic, at least in the affine case. 

5.8. NEW INTERSECTION THEOREM: Let R be an atfine local ring and F~ a 

finite free complex of length s over R. If  s is strictly smaller than the dimension 

of R and each homology group of F. has finite length, then F. is exact. 

Proof" Let R be an affine local ring of complexity at most d. Let h be its 

dimension. Let Fo be a finite free complex over R of length s < h and assume 

that Fo has complexity at most d. It then follows from (4.2) that  its homology 

groups Hi(Fo) all have complexity at most D1, where D1 only depends on d. 

Moreover, by (3.6), there exists a first order formula FinLenHd expressing in the 

code for R and the complex F.  that all Hi(F.)  have finite length. Similarly, there 

exists a first order formula Exactd, expressing that the complex Fo is exact. Let 

NIT d be the formula expressing that for an affine local ring R of complexity at 

most d and a finite free complex Fo over R of complexity at most d and of length 

s strictly smaller than the dimension h of R, we have that 

FinLenHd-+Exactd. 

See the proof of (5.3) how to express that s < h by means of a first order formula. 

The content of the New Intersection Theorem for affine algebras is then simply 

that NITd holds for every d. By the Peskine-Szpiro result in positive characteristic 

(see for instance [BH, Theorem 8.2.6]), the NITd all hold in positive characteristic 

and whence in all characteristics by the Lefschetz Principle (see Section 1). m 

6. Zariski-Lipman C o n j e c t u r e  

6.1. Definition: Let M be a finitely generated module over A, where A, as 

always, denotes an affine (local) ring. Let 

A n ~--~A '~ ~ M --+ 0 
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be a representation of M. The i - th  F i t t i n g  ideal  ~13i(M) is defined to be the 

ideal of A generated by the (n - i) • (n - i) subdeterminants of F, for i < n. For 

i > n, we put E~i(M) = A. These ideals are independent from the particular 

representation of the module M; see [Eis, Section 20.2] for more details. By 

expanding determinants along a row one verifies that the Fitting ideals form an 

ascending chain 

0 C ~ o ( M )  C ~ I ( M )  C . . .  C ~ - I ( M )  C A. 

The lower  r a n k  r (M)  of M is defined as the minimal index such that f~3i(M) 

0 and the u p p e r  r a n k  ~(M) as the minimal index for which ~ i ( M )  = A. 

One checks that  the lower rank equals the minimum of the minimal number of 

generators of Mp, where p runs over all prime ideals of A and the upper rank is 

the maximum of those same numbers. 

In particular, suppose A = K[X]/I  with g a field, X = (X1, . . .  ,X~). Let I = 

( f l , . . . ,  fro). Then the module of K-differentials f~K(A) admits a representation 

AmJ~c(~• --+ 12K(A) ~ 0, 

where Jac( f )  is the Jacobian matrix of partial derivatives (Of jOXj) .  It follows 

that the rank of Jac( f )  is n - r where r = r(f~K(A)). The corresponding non- 

zero ideal ~r_(~g(A))  is called the J a c o b i a n  ideal  of A and will be denoted by 

~K(A). 
Let p be a prime ideal of A. We have that Ap is g e o m e t r i c a l l y  r egu la r ,  or 

p - s m o o t h  over K,  if and only if, ~K(A) ~ p (see [Ohm, Remark (a) p. 103] and 

[Mats, Theorem 28.7]). 

6.2. COROLLARY: For each d C N, there exists a bound D with the following 

property. Let K be a field and A an aff/ne (local) K-algebra of complexity at 

most d. Let M be a finitely generated A-module of complexity at most d. Then 

each Fitting ideal ~2~3i(M) has degree type at most D. 

Moreover, the module of differentials ~K (A) has complexity at most D and 

the Jacobian ideal ~K(A) has degree type at most D. 

Proof: Immediate from the definitions. Note that a Fitting ideal can only be 

proper for i ~ d. | 

Remark: Similarly, one can find formulae expressing that a module of complex- 

ity at most d has a prescribed lower or upper rank. 
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6.3. PROPOSITION: For each d, q E N, there exists a first order formula ( p d =  q)d 
with the following property. Suppose K is a field and R is an a/f/ne local K-  

algebra of complexity at most d. Let M be a finitely generated A-module of 

complexity at most d. Take a E code(R) and m E code(M). Then (a, m) belongs 

to [(pd = q)dig, i f  and only if, M has projective dimension q as an R-module. 

Proof: Let R and M be as in the statement and let k be the residue field of R. 

It follows from (4.4) that the module TorR+I(M, k) has complexity at most D, 

for some bound depending only on d. Hence if we express that the latter module 

is zero (by requiring that its length is zero using (3.5)), then by [Mats, Lemma 1 

p. 154] we have expressed that M has projective dimension at most q. From this 

the required formula is easy to construct. I 

Remark: By a Theorem of Ferrand and Vasconcelos (see for instance [Ohm, 

Theorem 35.3]), an affine reduced local K-algebra R is a complete intersection, 

if and only if, ~K(R)  has projective dimension at most 1. This gives, using (6.2) 

and (6.3), an alternative construction for the first order formula CId of (5.3) 

expressing that  R is a complete intersection, at least in the reduced case. 

6.4. THEOREM: There are first order sentences (=formulae without free vari- 

ables) ZarLiPd , such that ZarLipd holds in an algebraically closed field K ,  for 

all d, if  and only if, the Zariski-Lipman Conjecture is true for K.  

Therefore, if  the Zariski-Lipman Conjecture holds for some algebraically closed 

field of characteristic zero, then it holds for any algebraically closed field of 

characteristic zero. 

Proof: The content of the Zariski-Lipman Conjecture is the following. Let R 

be a reduced affine local K-algebra, with K an algebraically closed field. The 

Conjecture claims that if Derg(R) is free, then R is regular. 

Recall that  Derg(R) is the module of K-invariant derivations on R, i.e., the 

set of K-linear endomorphisms 5 on R which satisfy the Leibnitz rule 5(ab) = 

aS(b) + bS(a). Moreover, we have an isomorphism (see for instance [Mats, page 

192]) 
Derg (R) -- Homa(~g  (R), R). 

Therefore, by (6.2) and (4.4), there is a bound D (only depending on d) on 

the complexity of Derg(R). Moreover, by (6.3), there is a first order formula 

DerFreed in the code a E code(R) expressing that Derg(R) has projective di- 

mension 0, i.e., that  Derg(R) is free. Using (2.2), one can easily write down a 

formula B.edd expressing in the code a of R that R = 7~(a) is a reduced local 
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ring: namely, express that the zero ideal is radical. Hence the Zariski-Lipman 

Conjecture for an algebraically closed field K states that 

[ReddlK N IDerFreealK C IRegglK, 

for all d. In other words, we can take for ZarLiPd the sentence 

Redd(a) A DerFreed(a) --> Regd(a ). 

The last statement then follows from the Lefschetz Principle. II 

6.5. COROLLARY: For each d E N, there exists N(d) E N with the following 

property. Let K be an algebraically closed field of characteristic a t / eas t  N ( d) 

and let R be a reduced atone local K-algebra R of complexity at most d. I f  the 

module DerK(R) of K-derivations is free, then R is normal. 

Proof: Lipman shows in [Lip] that if we replace the condition for R to be regular 

by the weaker condition that  R be normal in the Zariski-Lipman Conjecture, then 

this weaker statement holds for any algebraically closed field of zero characteristic. 

It follows from (iv) in (2.2), that the condition for R to be normal can be 

expressed by a first order formula Normald in the code a of R. Fix some d and 

let weakZLd be the formula 

Redd(a) A DerFreed(a) --> Normald(a). 

Hence weakZLd is true in C. Therefore it is true in almost all characteristics by 

the Lefschetz Principle (see Section 1), which is precisely what the statement 
claims. II 

6.6. COROLLARY: For each d 6 N, there exists N(d) 6 N with the following 

property. Let K be an algebraically dosed field of characteristic a t /eas t  N ( d) 

and let R be the local ring of a point P on a reduced hypersurface V over K of 

degree at most d. I f  the module Derg(R) of K-derivations is free, then P is a 

non-singular point on V. 

Proof." Scheja-Storch show in [SS] that the Zariski-Lipman Conjecture holds 

for any local ring R of a (reduced) hypersurfaee over an algebraically closed field 

K of zero characteristic. Namely, R is the localisation of a K-algebra of the form 

K [ X ] / f ,  where f is a single square-free polynomial and X = ( X 1 , . . . ,  Xd). Let 

Hypd be a formula in the code of R expressing this fact and set HyperZL d equal 

to 

Hypd(a ) A DerFreed(a) --+ Regd(a ). 
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As HyperZL d is true in C, it is true in almost all characteristics by the Lefschetz 

Principle (see Section 1), which is precisely what the statement claims. | 

Remark: In [Lip], the author shows by some easy examples that the conjecture 

in general is false in characteristic p > 0; e.g., take the singular curve defined by 

X p = yp+l .  Since normality is the same as regularity for curves, it follows that 

N(d)  in (6.5) and (6.6) will never be one. 

Nonetheless, this suggests a possible strategy to the original conjecture using 

positive characteristic methods. Namely, show that for the degree d small with 

respect to the characteristic p, the conjecture holds, i.e., the module DerK (R) of 

K-derivations being free implies that R is regular (with R as before of complexity 

at most d). Indeed, for then (19), for a fixed d, holds in algebraically closed fields 

of sufficiently large characteristic and whence, by the Lefschetz principle, in any 

algebraically closed field of characteristic zero. 

Keeping d small with respect to p avoids the pathology coming from non- 

constant polynomials with zero derivative, but we would still have 'typical' pos- 

itive characteristic tools at hand, such as the Frobenius automorphism, to prove 

the result. On the other hand, any proof of the Zariski-Lipman Conjecture would 

yield its validity in positive characteristic for 'small' degree, again by an appli- 

cation of the Lefschetz Principle to (19), so that the above sketched heuristic is 

perfectly defensible. 

7. B o u n d s  in intersection theory 

7.1. Definition: In this section we will extend some of the previous results to 

coherent sheaves on schemes of finite type over a field. In fact, (7.5) below was 

my original motivation for starting the present research. To start, we will have 

to define a notion of complexity for schemes of finite type over a field. Firstly, 

let us say that  a Zariski closed subset V of Spec A has complexity at most d, if 

A has complexity at most d and there exists an ideal a of degree type at most d 

in A, such that  V is the the Zariski closed set defined by a. Note that in view 

of (• of (2.2) we might as well have defined this by requiring that the radical 

ideal defining V has complexity at most d; both notions of complexity are then 

mutually bounded (see (3.8)). However, if we are interested in the subscheme 

structure of V given by a particular ideal a, then its complexity is defined as 

the degree type of that ideal. In summary, if V is a closed subscheme of Spec A 

defined by an ideal a, then its complexity czar as a Zariski closed subset is given 

as the minimum of deg. type I where I runs through all ideals with the same 
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radical as a, whereas its complexity CSc h as a subscheme is given by deg. type a. 

Therefore czar _< CSch, and conversely CSch is uniformly bounded by Czar, in view 

of ( i i ) .  Similarly, we say that a Zariski open subset has complexity at most d, if 

its complement is a Zariski closed subset of complexity at most d. 

We wilt say that  a scheme X of finite type over some field K has c o m p l e x i t y  at 

most d, if the following holds. There exists a finite an n e  covering X = UIU..-UUs 

with s _< d and each Ui = Spec A~ with Ai an an n e  ring of complexity at most d. 

Moreover, each Uij = UiAUj viewed as a Zariski open subset of Ui has complexity 

at most d and the patching isomorphisms Uij -+ Uji have complexity at most 

d. The above definition can be extended without any difficulty to schemes which 

are essentially (=locally) of finite type over some field. Similarly, we extend 

the notions of complexity for closed subschemes and Zariski closed or open sets 

from afllne to arbitrary schemes of finite type. If X is a scheme of finite type of 

complexity at most d, then a coherent Ox  module $" is said to have complexity 

at most d, if there exist finitely generated Ai-modules Mi of complexity at most 

d, such that  $-(Ui) is the sheaf associated to the module Mi, for some a n n e  

covering X = Ui U . . .  U Us as above with transition functions of complexity at 

most d. In particular, we say that a point x of X has complexity at most d, if 

its local ring has complexity at most d. 

Of course, most of the theorems so far proven in the an n e  (local) case go 

through for arbitrary schemes (essentially) of finite type over some field. So 

far we have used the existence of uniform bounds to obtain definability. In the 

following result on the openness of certain loci, the argument gets reverted. 

7.2. THEOREM: For each d, there exists a bound D with the following proper- 

ties. Let X be a scheme of finite type over some algebraically closed field K.  I f  

X has complexity at most d, then the locus of all points where X is geometri- 

cally regular, regular, complete intersection, Gorenstein or Cohen-Macaulay is a 

Zariski open of complexity at most D. 

Proof: For a definition of geometrically regular see (6.1). Now use (6.2) which 

says that  the complexity of the Jacobian matrix is uniformly bounded; we leave 

the details for the reader. For the remaining properties we will use (5.3). Let 

P ( X )  stand for any of the loci of points where X is regular, complete intersection, 

Gorenstein or Cohen-Macaulay. Since the problem is local, we may assume that  

X = Spec A is anne ,  with A an a n n e  K-algebra of complexity at most d. 

Let Xm~• be the collection of all maximal ideals of A (i.e., closed points of 

X),  which by the Nullstellensatz can be viewed as a subset of a n n e  K-space K d. 

That  is to say, every maximal ideal m is of the form (Xi - x i , . . . ,  Xd --Xd), with 
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x ---- ( X l , . . .  ,Xd) E K d. Therefore, x is the unique code for m and we denote this 

b y  IB ---- fit  x . 

By (5.3), we can find a formula P, such that (a, x) belongs to IPI K, if and only if, 

the maximal ideal mx belongs to the locus P(X) M Xma~, where X = Spec A(a). 

Fix some affine K-algebra A, let X -- Spec A and let a E code(A). Let PA be the 

formula P where the code a of A has been fixed. By quantifier elimination (see 

Section 1), we know that [PIK is a constructible set and therefore so is [PAi/~- 

Moreover, from our above discussion, we have that P(X) M Xmax ---- [PAIK" Let 

be the constructible subset of X given by PA, i.e., let Z be given by the 

equations and inequalities of PA. It is a well known fact (see for instance [Mats, 

w especially Exercises 24.2 and 24.3) that P(X) is an open set in all four cases. 

As P(X) and ~. are two constructible sets with the same closed points, they are 

actually equal. This follows from the fact that an affine algebra is a J a c o b s o n  

r ing,  that  is to say, that  every radical ideal is the intersection of all the maximal 

ideals containing it, see [Mats, Theorem 5.5]. Let D be the maximum of the 

degrees of all polynomials occurring in the formula P. It follows that ~ -- P(X) 
has complexity at most D. I 

Remark: It follows also from (5.3) that we can write down formulae expressing 

that  a point x C X of complexity at most d belongs to one of these loci. 

T h e  fact that  the above loci are open could also be proved using the present 

definability results; we intend to return to the study of these and similar questions 

in a future paper [Sch 2]. There we will also show how to extend these results to 

arbitrary, not necessarily algebraically closed fields. 

7.3. Definition: Let X be a scheme of finite type over some field K. Recall that  

zk(x) denotes the free abelian group on closed reduced irreducible subschemes 

( subvar ie t i es ,  for short) of X of codimension k. An element of zk(x) is called 

a k-cyc le  on X.  The direct sum of these zk(x) is denoted by Z*(X) and its 

elements are referred to as (a lgebra ic )  cycles  on X. We say that  a cycle a has 

complexity at most d, if X itself has complexity at most d and a is of the form 

8 

a = ~ niY/ 
i----= 1 

with s < d and [nil _< d and each Y~ a closed subvariety of complexity at most d. 

Since the Zariski topology on X is Noetherian, we can write X uniquely as 

X1U.. .UXs,  where the Xi are subvarieties of X with Xi ~ Xj.  These subvarieties 

Xi are called the i r r e d u c i b l e  c o m p o n e n t s  of X. The cycle  a s so c i a t ed  t o  X 
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is by definition the cycle ~ n~Xi, where ni is the length of Ox,~ and where ~/i 

is the generic point of Xi, for i = 1 , . . . ,  s. In particular, if X = SpecA is affine, 

then Xi is the closed subset defined by a minimal prime gi of A and ni is the 

length of the Artinian local ring A~. 

Assume now that  X is moreover regular. Let us briefly review some intersection 

theory for closed subschemes on a regular scheme of finite type over a field. Let Y1 

and Y2 be two closed subschemes of X. Their intersection ]I1 n ]I2 is by definition 

the scheme ]I1 • x ]I2, which is a closed subscheme of X. We say that ]I1 and 

]I2 in te r sec t  p roper ly ,  if the codimension of each irreducible component F of 

Y1 N Y2 equals codim Y1 + codim ]I2. If this is the case, let 7/be the generic point 

of such an irreducible component F. We define, following Serre in [Ser], the local 

i n t e r sec t ion  n u m b e r  by 

oc 

i(r/; Y1, ]I2) = Z ( -1)n~ ~ ( Oy,,v, OY2,,), 
n = 0  

where the/3n are the Betti numbers as defined in (4.5). Note that this sum is 

finite. Indeed, since X is regular, every Ox-module has finite projective dimen- 

sion by [Mats, Theorem 19.2] and therefore/3 ~ (Oy,,v, Oy2,~) = 0 for n strictly 

bigger than the dimension of X. The in te r sec t ion  cycle of Y1 and Y2 is then 

defined as the element in Z* (X) given by 

(16) YI" Y2 = Zi (~F;Y1 ,Y2)F ,  
F 

where the sum runs over all irreducible components F of ]I1 N ]I2 and r/F denotes 

the generic point of F.  If ]I1 and Y2 do not intersect properly, then a more com- 

plicated definition is required, using Chow's Moving Lemma. (We will not treat 

this case here.) Finally, the intersection of two cycles which intersect properly 

(meaning that each subvariety in the support of one cycle intersects properly 

every subvariety in the support of the other cycle) is defined by extending (16) 

by linearity. 

7.4. THEOREM: For each d E N, there exists a bound D with the following 

property. Let X be a scheme o[ finite type over a field K, o[ complexity at most 

d. Let Y be a closed subscheme of X of complexity at most d. Then the cycle 

5y associated to Y has complexity at most D. 

Proof." By (•177 of (2.2), the number s of generic points of Y and the complexity 

of each irreducible component Yi of Y is uniformly bounded and, by (2.4), so is 

each n~. | 
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7.5. THEOREM: For each d E N, there exists a bound D with the following 

property. Let X be a scheme of finite type of complexity at most d. Let al  and 

a2 be two cycles of X of complexity at most d. I f  al  and a2 intersect properly, 

then their intersection cycle a l  �9 a2 has complexity at most D. 

Proof  Without loss of generality we may reduce to the case that X = Spec A 

is affine and that ai = Yi is a closed subscheme. Let al and a2 be the ideals 

of A defining Y1 and ]72 respectively. Let z/be a generic point of Y1 n ]I2- To zl 

corresponds a minimal prime ideal p of al + a2. By ( i i )  of (2.2), the degree type 

of p is at most D, where D only depends on d. The local intersection number 

O(3 

n A p  i(r/; ]I1, ]72) ----- ~-"~(--1) 3n ( A , / a l A , ,  Ap/a2Ap) 
n : 0  

is uniformly bounded by (4.5) and the corollary follows. (Note that X can have 

dimension at most d, as its complexity is at most d.) | 

Remark 1: By now the reader will have no problem in writing down a formula 

in the codes of three cycles expressing that the last one is the intersection of the 

two first ones, provided they intersect properly. 

Remark 2: On Z* (X) several equivalence relations (rational equivalence, nu- 

merical equivalence,...) are defined. Macintyre has assured me that Hrushovski 

has a counterexample to the first order definability of rational equivalence. How- 

ever, Macintyre himself argues in [Mac] that it would follow from the Standard 

Conjectures of Grothendieck that numerical equivalence is first order definable. 

7.6. PROPOSITION: For each d, there exists a bound D with the following prop- 

erty. Let K be an arbitrary field and A and B two affine K-algebras of complexity 

at most d. Let ~o : A ~ B be a morphism of complexity at most d. Then for every 

finitely generated A-module M of complexity at most d, the B-module M | B 

has complexity at most D. 

Proof'. Choose a (d x d)-matrix F with entries of degree at most d, such that  

the following sequence is exact, 

• 

A d r  ~Ad_+M-_~O. 

Tensoring over B yields an exact sequence 

• 

B d rS)Bd --+ M | B --~ O. 
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Here FB is the image of the matrix F in B. As ~ is given by polynomials of 

degree at most d, FB has all its entries of degree at most d 2. Using (3.3), the 

statement now follows readily. | 

Let us just give one application of this observation. 

7.7. THEOREM: For each d, there exists a bound D with the following property. 

Let K be an arbitrary t~eld and let f : Y --4 X be a morphism of complexity at 

most d between schemes of tlnite type over K.  Let Z be a closed subscheme of 

Y of complexity at most d. For any closed point x E X ,  the intersection cycle 

f-l(x)" Z 

has complexity at most D, whenever the intersection is proper. 

Proof  Without  loss of generality, we may take X --- Spec A and Y = Spec B to 

be affine. A closed point x of X then corresponds to a maximal ideal m of A. 

Assume first that x is K-rational, so that K is the residue field of x and hence 

has complexity at most d, since m is generated by polynomials of degree one. 

Therefore, by (7.6), there is a bound D, only depending on d, with the property 

that the coordinate ring B / m B  of the closed fibre f - 1  (x) has complexity at most 

D. For a general closed point, let L denote its residue field. Let A1 -- A | L 

and B1 -- B Q K L .  Let ml be any maximal ideal of A1 lying above m and 

xl E X1 = SpecA1 the corresponding closed point. In particular, we have an 

isomorphism of coordinate rings 

(17) B/raB ~- B1/mlB1 

of the closed fibres of x and xl respectively. We can now apply the above argu- 

ment, since xl is L-rational. In particular, since D does not depend on the field 

K,  the complexity of the affine coordinate ring of the fibre f - l ( x )  is therefore 

also bounded by D, in view of (17). 

So in either case, the fibre ring has complexity at most D and we now finish 

with an application of (7.5). | 

Remark: More generally, the same proof shows that for any closed subvariety F 

of X of complexity at most d, the complexity of the intersection cycle f - l ( F ) .  Z 

is bounded by D, whenever the intersection is proper. 
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